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AI Applied to Cancer

Adoption of artificial intelligence in breast imaging:
evaluation, ethical constraints and limitations
Sarah E. Hickman1, Gabrielle C. Baxter1 and Fiona J. Gilbert 1,2

Retrospective studies have shown artificial intelligence (AI) algorithms can match as well as enhance radiologist’s performance in
breast screening. These tools can facilitate tasks not feasible by humans such as the automatic triage of patients and prediction of
treatment outcomes. Breast imaging faces growing pressure with the exponential growth in imaging requests and a predicted
reduced workforce to provide reports. Solutions to alleviate these pressures are being sought with an increasing interest in the
adoption of AI to improve workflow efficiency as well as patient outcomes. Vast quantities of data are needed to test and monitor
AI algorithms before and after their incorporation into healthcare systems. Availability of data is currently limited, although
strategies are being devised to harness the data that already exists within healthcare institutions. Challenges that underpin the
realisation of AI into everyday breast imaging cannot be underestimated and the provision of guidance from national agencies to
tackle these challenges, taking into account views from a societal, industrial and healthcare prospective is essential. This review
provides background on the evaluation and use of AI in breast imaging in addition to exploring key ethical, technical, legal and
regulatory challenges that have been identified so far.
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BACKGROUND
In breast oncology, a multidisciplinary team approach is essential,
with imaging playing a key role in the care pathway for the
screening, diagnosis, staging, monitoring and follow-up of
malignancies. Novel imaging techniques of increasing complexity
have resulted in longer reporting times. This, coupled with a
shortage of radiologists and exponential growth in imaging
requests, has led to an increasing demand on radiology
departments. Recently, there has been a huge interest in using
artificial intelligence (AI) for breast imaging to address these
pressures, in a speciality where timing is critical and resources are
finite.1

The term AI covers both machine learning and deep learning.2 It
is the advances in deep learning for image interpretation that
have resulted in the massive growth in interest for use in breast
imaging.3 AI applications can be broken down into two categories
(Fig. 1). The first category is “broad AI”, which lends itself to the
administrative and organisational tasks within the imaging path-
way. These systems can be used to replace repetitive and routine
tasks such as appointment booking, contrast adjustment and
image quality checks. The second category is “narrow AI”, which
covers computer-aided detection (CADe), diagnosis (CADx), and
triaging worklists (CADt) as well as predicting treatment response
and segmenting lesions.3 These AI systems can be used as aids for
clinicians or be used autonomously. Ultimately these AI solutions
aim to improve the patient’s outcomes as well as the healthcare
system’s efficiency. The latest advances in computer processing

and the increased availability of data have been pivotal for
developing AI-CAD (CADe and CADx) systems.4,5

It is important to remain vigilant to the potential bias and
ethical questions that arise when using this technology as well as
the challenges of incorporating such systems into pre-existing
workflows.6,7 These overarching challenges need to be explored in
order to facilitate discussion and drive engagement by clinicians,
computer scientists, responsible national agencies and National
Health Service (NHS) Trusts.8

This article reviews how AI has been applied and evaluated
using breast imaging as an exemplar. We then consider the ethical
and legal challenges at the algorithm, data and clinical levels.
Lastly, we discuss the barriers and limitations currently facing this
field from a technical, clinical and governance perspective.

EVALUATION OF AI IN BREAST IMAGING
Retrospective evaluation
Retrospective testing on internal or external datasets is essential
when assessing new AI tools for clinical imaging.4,9 An algorithm is
often trained and tested on an internal dataset which has been
divided into an 80:20 split.9 This means that the training data is
not used to test the algorithm otherwise this would result in bias
and an overestimation in performance.10 Ideally external datasets
consisting of new unseen data which has not been used for
algorithm development are used to ascertain the generalisability
of an algorithm in different populations with images from
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different manufacturers (see Ethical and legal constraints—
Algorithm level for more information).9,11 It is also important to
distinguish between testing that is conducted internally (by the AI
developers) and externally (by an independent institution).
External testing can limit bias and also allow for the comparison
of multiple algorithms with similar applications.12

Data that is representative of the population, structured,
annotated and ready to use is limited, existing in only a small
number of institutions (Table 1).13 New imaging portals and
repositories, such as the Health Data Research Innovation
Gateway, have been set-up to try to address these data gaps
and are key to developing a data ecosystem to meet the
demand.14 Principles such as FAIR (findability, accessibility,
interoperability, and reusability), aim to guide data extraction as
well as long-term management and sharing, in order to obtain
the “maximum benefit” from datasets.15 However, a balance must
be found in this ecosystem between the implementation of FAIR
principles and the often-strict controls put in place by Information
Governance teams and ethics committees when creating imaging
repositories.
The performance of an algorithm can be compared against two

outcomes, (1) the ground truth and (2) the radiologist’s
performance.9,10 The ground truth or “gold standard” is seen as
the ‘absolute’ outcome of a case (for example cancer or no cancer)
but variations of the ground truth between healthcare systems
occur due to differences in standard of care guidelines,
histopathology reporting criteria, imaging procedures conducted
(e.g. use of magnetic resonance imaging (MRI) versus ultrasound)
and screening frequency (e.g. range from 12 to 36 months). The
radiologist’s performance sets a “clinically relevant threshold” for
AI performance to be compared against and is essential to
understand the potential impact of using such systems in real-
time workflows (for example double reading in the UK breast
screening programme).11,24,25 However, in screening when using
the radiologist’s assessment as the gold standard, there is
potential to introduce bias in favour of the radiologist, where
only those patients recalled by the radiologist can be diagnosed
by the AI. When trying to prove the superior performance of AI
compared with radiologists, interval cancers need to be included
in testing sets. Experienced radiologists’ reports should also be
included to allow for the comparison against representative
programme reader performance, and not just prove that the AI is
superior to average or non-specialist performance. Algorithms
need to meet or exceed these thresholds in order to show a
potential benefit before their adoption into healthcare systems is
considered.

Prospective evaluation
Whilst testing on retrospective datasets provides a “snapshot” of
possible performance, the nuances of medical pathways cannot
be underestimated. Prospective testing in real-time is essential to
fully understand the influence of AI on human performance and
the interaction between the two.4 There are few prospective
studies on the use of AI in radiology (Table 2), with a recent
systematic review only reporting one randomised trial registration
and two non-randomised prospective studies in radiology.26

To ensure the clarity of reporting results from these studies, pre-
existing reporting standards have been adapted and include the
Consolidated Standards of Reporting Trials-AI (CONSORT-AI),
Standard Protocol Items: Recommendations for Interventional
Trials-AI (SPIRIT-AI) and the Checklist for Artificial Intelligence in
Medical Imaging (CLAIM).28–30 The Transparent Reporting of a
Multivariable Prediction Model for Individual Prognosis or
Diagnosis-Machine Learning (TRIPOD-ML) and Standards for
Reporting Diagnostic Accuracy Studies–AI (STARD-AI) are also
currently under development31,32 (Table 3).
Performance of AI is often measured in terms of sensitivity,

specificity, area under the curve (AUC) and computation time
(time taken to process data). Where AI is used by a radiologist, the
effect on performance is measured in the same way (sensitivity,
specificity, and AUC) with the additional measure of reading time
by the radiologist. The AUC provides a summary estimate of
diagnostic accuracy, taking into account both the sensitivity and
specificity to demonstrate how well the algorithm can differenti-
ate between cancer or not cancer across all thresholds.33 It
provides a measure between 0 and 1, where a higher score means
a better classification.9 However, the AUC is subject to certain
pitfalls. It is not “intuitive” to interpret clinically, and theoretically
algorithms with different sensitivities and specificities can have
the same AUC.33 Therefore, alternative measures such as “net
benefit” have been proposed as well as routine reporting of
sensitivity and specificity, which allow for direct clinical compar-
ison.33 Lastly, for both the algorithm alone and when used by the
clinician, the effect on nationally reported standards (e.g. cancer
detection rate, recall rates, tumour size and lymph node status)
should be evaluated as part of prospective studies.9

Key considerations for clinical evaluation
Screening AI systems could be cost-effective by improving early
detection of important “killer” cancers (higher grade) potentially
improving long term survival. However, the substantial investment
of AI development, IT infrastructure, and continuous monitoring
need to be costed, therefore cost-effectiveness requires careful
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Fig. 1 AI applications to breast imaging. The central part of the figure shows the relationship between commonly used terms in the field of
AI. The arrows point to the two categories, “Broad AI” and “Narrow AI”, where AI is applied in breast imaging. Examples of these applications
are outlined in the lists under each heading.
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evaluation.10,34 The ease of integrating AI into pre-existing
hospital systems, such as radiology information systems and
Picture Archiving and Communications Systems (PACS), health-
records and administrative systems, is a another key
consideration.25,34 Wider measures for clinical evaluation to also
include are patient acceptability and effect on uptake of screening
programmes as well as the training required for radiologists to be
able to use and interpret AI tools.35

Continuous monitoring to ensure adherence to national
standards needs to be in place to observe both static and
adaptive (“learning on the fly”) AI when used in real-time
workflows (see Ethical and legal constraints—Algorithm level for
more information).25,36 Each hospital could have an infrastructure
to evaluate and monitor algorithms, but this is unlikely to be
feasible in many hospitals due to the data storage requirements
and lack of technical expertise and resources to set up such an
environment. A centralised testing system at designated centres
using pre-set national standard thresholds for different AI
algorithm applications would be a more sustainable approach.
As outlined above, the steps in the evaluation pathway of AI are

clear, requiring retrospective, prospective and continuous real-
time testing. However, the caveats of testing such as how to
access suitable datasets and defining “clinically relevant thresh-
olds” still need to be agreed. In the UK NHSX has set-up “AI Labs”
to begin conducting centralised and standardised testing
procedures.37,38

THE BREAST IMAGING PATHWAY AND AI
Screening
AI has been used in radiology since the 1990’s with initial CADe
tools in mammographic screening prompting readers to look
again at areas of concern in the image.39 More recent AI systems
can now meet and exceed the performance of radiologists for
stand-alone cancer detection in screening mammography, achiev-
ing a sensitivity from 0.562 to 0.819 with a specificity of
0.843–0.966 (set at first reader specificity).5,12 However, this is
not the case for all national screening programmes.40 In a
retrospective international crowdsource competition, the perfor-
mance of multiple algorithms was compared on a standardised
test set from Sweden. An ensemble algorithm was built by
concatenating the eight best individual performing algorithms,

which was shown to outperform the top single algorithm, but not
the clinicians performance.40

In the UK 2.2 million mammograms are taken each year and
read by two radiologists, putting a high demand on an already
stretched workforce.1,35 The majority of screening mammograms
are normal.35,41 A more efficient method is sought whilst
maintaining current cancer detection and recall standards. AI
can now reliably triage “normal” mammograms (47–60%), which
would mean that these would not need to be reviewed by two or
possibly even one radiologist.42,43 Whilst estimated to only miss
up to 7% of cancers, the CADt algorithms could drastically
improve the efficiency of breast screening. However, questions
remain around what an acceptable miss rate would be for
algorithms when used in routine screening.
AI tools previously used for mammography have been adapted

for other screen imaging techniques such as digital breast
tomosynthesis (DBT), which has longer reading times that can
be decreased by around 50% using AI.44 MRI is used for the
screening of high-risk women, particularly those with a familial risk
of breast cancer or BRCA1/BRCA2 carriers. Deep learning
algorithms can find visual patterns in images and have been
used to detect and diagnose breast cancer to produce a fully
automated MRI AI-CAD system.45–47

Risk stratification
Screening can be tailored according to a woman’s breast cancer
risk. Risk factors for developing breast cancer include breast
density, family history, lifestyle factors (e.g., alcohol and smoking),
genetic mutations, hormone exposure and expression.48,49 Breast
cancers can also go undetected due to dense breast tissue
obscuring the view of a cancer on a mammogram, called
“masking”.50 AI density measures can provide quantitative scores
or category scores such as BI-RADS, which can provide a more
consistent interpretation than a radiologist.50,51 It may be possible
for the latest density tools to detect women who are at the
highest risk of "masking" and more likely to develop a cancer that
could progress to later-stage disease.50 Automated breast density
can also be incorporated into existing prediction models
(BOADICEA and Tyrer-Cuzick) to improve performance and assist
in the implementation of targeted screening as well as the use of
supplemental imaging.51 The “measurement challenge” aims to
compare automated density measures which have been shown to

Table 1. Datasets publicly and privately available for breast imaging.

Dataset Country Year of studies Modality Number
of cases

Number
of images

The Mammographic Image Analysis Society Digital Mammogram
Database (MIAS)16

UK 1994 SF-MG 161 322

Curated Breast Imaging Subset of the Digital Database for Screening
Mammography (CBIS-DDSM)17

USA 1999 (updated 2016) SF-MG 1566 10,239

Investigation of Serial Studies to Predict Your Therapeutic Response
with Imaging and Molecular Analysis (ISPY1 (ACRIN 6657))18

USA 2002–2006 MRI 222 386,528

InBreast19 Portugal 2008–2010 FFDM 115 410

Cohort of Screen-Aged Women (CSAW)20 Sweden 2008–2015 FFDM 499,807 >2,000,000

The OPTIMAM Mammography Image Database (OMI-DB)13 UK 2010–2019 FFDM 151,403 >2,000,000

New York University Breast Cancer Screening Dataset (NYU BCSD
v1.0)21

USA 2010–2017 FFDM 141,473 1,001,093

Breast Cancer Digital Repository (BCDR)22 Portugal NA SF-MG
FFDM

1010
724

3703
3612

The Cancer Genome Atlas Breast Invasive Carcinoma (TCGA-BRCA)23 USA NA MRI
MG

139 230,167

FFDM full-field digital mammography, MG mammography, MRI magnetic resonance imaging, NA not available, SF screen film.
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overcome the inconsistencies in human reporting as well as being
able to predict breast cancer risk.52

Monitoring and prognostication
MRI is routinely used in the monitoring of response to neoadjuvant
chemotherapy, with patients imaged before, during, and after
treatment. Deep learning algorithms have been implemented to
evaluate pathological complete response to chemotherapy using
post-treatment MRI with an AUC of 0.98,53 which could affect the
extent of post-treatment surgery, or potentially reduce the need for
surgical excision at all. A number of studies have used deep learning
to identify features from pre-treatment MRI that are predictive of
response in an unsupervised fashion.54–56 Early prediction of response
to different types of chemotherapy could avoid unnecessary toxicity
and cost from ineffective treatment as well as enable a more
personalised approach to treatment. AI has also been used in
prognostication to predict recurrence (Oncotype DX recurrence score)
from MRI.57 However, given the moderate accuracy of these
techniques (0.77–0.93), further work is required before their integra-
tion into clinical practice.
The evidence base for the performance and possible applica-

tions of AI to breast imaging is rapidly evolving. Systems acting as
stand-alone readers show promise in decreasing workload, whilst
systems to predict treatment response could guide tailored
treatment strategies. In addition, systems to identify those at
greatest risk of a cancer being missed or developing cancer may
aid in the application of a targeted screening approach.

ETHICAL AND LEGAL CONSTRAINTS
Guidance level
The Department for Health and Social Care, and international
collaborations such as the Global Partnership on Artificial
Intelligence, have developed guidance for implementing digital
technology including AI.58 They highlight the need for oversight
and continued patient involvement to guide the development of
“human-centric” AI which is essential to maintain the trust of the
public, and avoid a repeat of previous controversies such as
inappropriate data sharing.59–61

Algorithm level
There is a danger of innate latent bias built into certain systems,
especially if these have been developed on datasets that
underrepresent certain populations (with a lack of diversity in
age, ethnicity and socioeconomic background) and therefore lack
the ability to generalise.62 This could be further compounded by
the limited diversity within the scientific workforce itself which
under represents the “interests and needs of the population as a
whole”.63 Outcomes based on pre-existing inequalities could be
exacerbated by the skewed outcome being fed back into the
algorithm, creating negative reinforcement, thus limiting the
fairness of an algorithm.62 This can lead to algorithmic decisions
that amplify discrimination and health inequalities. The data used
in testing should therefore encompass a representative relevant
population and the components of the dataset used explicitly
reported alongside the results. A recent paper provides an
example of such documentation, where an AI-CAD mammography
algorithm trained on data from South Korea, USA and UK primarily
using data from GE machines, achieved the best performance
compared with other algorithms (sensitivity (81.9%) at the reader
specificity (96.6%)), when tested on data from Sweden on only
Hologic machines, demonstrating generalisability.12 Algorithms
also have the ability to “learn on the fly”, that over time become
more biased due to “performance drift”, thus potentially limiting
their generalisability.36,63 “Learning on the fly” could potentially be
beneficial to adjust algorithms to the local systems in which they
are being used but this will also require close observation through
regular audits to monitor for detrimental “performance drift”.10,25Ta
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Transparency around how an algorithm reaches a decision, its
architecture and source code availability is often limited by
intellectual property clauses to protect proprietary information.38

The opaqueness of an algorithm’s deduction can be clarified by
using saliency maps, which highlight (e.g. heatmap) the part of the
image which the algorithm has used to make its decision,
ensuring that the algorithm is using at the correct part of the
image to make its clinical deduction and not “noise” in the image
such as a clip, artefact or label.64 Initial checks built into the
algorithm, ensuring the image is of sufficient technical quality
from which to deduce an interpretation similar to the checks
performed by radiologists, is also an important step for robust
interpretation. A reliable algorithm providing consistent, clear and
reproducible results, so as not to cause ambiguity in decision
making, is key to improving confidence in these systems.

Who controls the data?
In the UK there is an understanding that NHS Trusts will govern,
control and use patient data in an anonymised format to conduct
research for patient benefit.6,65 There is also an understanding that
patient data will be protected and overseen by Information
Governance teams at NHS Trusts.7,37

Extracting data from the fragmented silos of the NHS remains a
challenging task due to the lack of interoperability between
systems.66 Data relating to an individual’s health is defined as
“special category” data and requires additional procedures and
safeguards including data minimisation, proportionality, and
necessity.67–69 Data from which an individual can be recognised
is termed personal identifiable data (PID). This data is often
pseudonymised or de-identified for healthcare research to remove
identifiers and replace them with a new random identifier (e.g.,
Trial ID), ensuring privacy is upheld.70

Where consent from individuals for data use cannot be feasibly
obtained, provisions are in place to obtain access to PID in order
to create large datasets.71 Regulation has emphasised the
importance of patient and public involvement (PPI) when using
patient data for research, especially in the context of unconsented
data use.71 Feedback provided by PPI can be used to enhance the
communication between the public and healthcare sector,
particularly around the distribution of a data notification and
objection mechanism.38,71 Studies carried out by organisations
such as the Wellcome Trust show that the public acknowledge a
lack of understanding and hesitancy regarding the uses of health
data, particularly when data is shared with and accessed by
commercial companies.72 National data opt-outs, proposed as part
of the Caldicott Review (2016), give patients the option for their
data to not be processed.73 Recently, the National Data Guardian
opened a consultation to revisit the seven Caldicott principles that
guide the use of PID and to ensure that public “expectations”
should be considered when using confidential information.74

However, additional steps need to be taken to inform and educate
the public around data use in healthcare so they can be
empowered to explore these options.

The expected economic trade-off within the NHS in terms of
financial payment, shareholding position or fees for product
procurement should be outlined as part of a national policies.
Allowing for the potential benefits from sharing valuable NHS data
when collaborating with the commercial sector to be realised.10,58

It is important to ensure this benefit is fairly distributed across the
whole of the NHS to avoid widening gaps in available resources at
different Trusts.8,66

Linked data across multiple fields such as imaging, genetic and
clinical records are of increasing importance for the development
of risk prediction models for both prognosis and treatment
response. Higher accuracy has been achieved by algorithms when
multiple data types are used in training to provide “rich” risk factor
information.75 Conversely, an understanding of how much data is
too much data is required. For example, linking genetics,
demographics, home monitoring, smart watch data may mean
data is no longer de-identified. In addition, it must be understood
that even data collected in large quantities may still be
unrepresentative due to a the lack of access to healthcare and
ability to participate in research for different populations.63

Data provenance, whilst currently not at the forefront of
discussions, could become an increasingly tangled web to unwind.
Individual Trust data that is currently being used for training
algorithms could at the same time be incorporated into the
development of centralised evaluation datasets, resulting in a
concealed overlap. The ability to track data back to the source and
see all of its uses since it left the source via a flag-based system is
needed. However, such systems do not currently exist and would
not be easy to integrate, let alone to apply to data which has
already been processed.

Clinical level
Clinical acumen must not be lost. AI and clinicians must work in
tandem so that if one system fails (e.g. AI) the safety-net of the
other system (e.g. radiologists) is in place to avoid harm. However,
when AI systems operate alongside clinicians there is a possibility
of the clinician becoming over dependent and automation bias to
occur.8,62 In addition, radiologists might become distracted by
prompts from AI, increasing reading time and potentially
adversely affecting reader performance.76

Where these systems are designed to act independently,
human supervision via “pit-stop” analysis of a select cohort of
patients, in an audit like fashion, is essential in order to maintain
patient safety. The logging and reporting of errors is a potential
area of AI automation where human oversight required for the
monitoring of AI will necessitate vast amounts of time and
resources. Nonetheless in time automation might replace certain
aspects of entire jobs. This is juxtaposed against the creation of
jobs in the field of healthcare informatics, to create datasets and
facilitate the incorporation of AI into hospitals.38,60 A potential
overarching benefit from automation could be that more time is
freed up for clinician interaction with patients and interventions
such as image-guided biopsies.

Table 3. Reporting criteria adapted for AI studies.

Publication date Application Number
of items

Link

CONSORT-AI28 2020 Randomised trials 25 original
14 new

https://www.equator-network.org/reporting-guidelines/
consort-artificial-intelligence/

SPIRIT-AI29 2020 Clinical trial protocols 51 original
15 new

https://www.equator-network.org/reporting-guidelines/
spirit-artificial-intelligence/

CLAIM30 2020 AI studies in radiology 42 https://pubs.rsna.org/doi/full/10.1148/ryai.2020200029

TRIPOD-ML31 Pending Clinical prediction model
evaluation

– https://www.tripod-statement.org

STARD-AI32 Pending Diagnostic accuracy studies – –
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A broader question exists around notifying patients when AI is
used in making diagnostic and treatment decisions. Will a patient
feel worse if a cancer is missed by an AI tool compared with a
human reader? Another consideration is that in certain healthcare
systems the prediction of cancer risk could impact patient
insurance policies as well as patient mental health by causing
anxiety. Therefore, prior to calculations such as the risk of
developing a disease, should the patient have to approve this
analysis following counselling by a healthcare professional, similar
to procedures currently provided for genetic testing?
Overall, these ethical and legal dilemmas should not be

underestimated and the provision of guidance from national
agencies to tackle these, taking into account views from patients,
commercial companies and clinicians, is essential.

PRACTICAL CHALLENGES AND LIMITATIONS
Technical level
Whilst the NHS has state-of-the-art scanners and treatments, it is
also still reliant on certain record systems that are paper-based.
Thus, technological advancement is a pivotal challenge facing the
NHS to allow for the integration of new technology and the
flexibility for exporting data on a mass scale.77 Modifications to IT
capabilities and digitisation of records is vital and should allow for
communication and coordination between Trusts.77,78 The NHS is
also a tightly sealed system; however, companies will need access
to update and modify their algorithms. Conversely, caution is
needed when opening up systems due increasing the vulnerability
to “cyber-attacks”.79 How this external access is overseen and
governed is a current technical and logistical challenge.
While the majority of data processing within the NHS at present

occurs onsite, ‘big data’ processing for image analysis requires the
procurement of graphical processing units (GPUs) at Trusts or
within cloud-based systems, which may entail the processing of
data offsite.77 In addition, capacity for larger data storage is
needed for the curation of datasets and the storage of additional
image analysis provided by algorithms. A lack of clarity still exists
around suitable environments and encryption for data storage as
well as the level of de-identification required. When de-identifying
imaging data it is necessary to retain data that is essential for
image viewing, such as the private Digital Imaging and Commu-
nications in Medicine (DICOM) tags, whilst ensuring all PID is
removed.80 As imaging becomes more advanced it is important to
ensure that patients cannot be re-identified via the possibilities of
image reconstruction, such as reconstructing facial features from
computer tomography (CT) or MRI head scans.

Clinical level
A new multidisciplinary team will need to be developed and
trained including clinical scientists and informaticians to work with
clinicians to incorporate AI analysis into care decisions.6,81

Advancing and generating new technical expertise will require
access to training programmes and retention of highly skilled staff
who currently re-locate to industry.38,82 Programmes such as the
NHS Digital Academy are designed to upskill healthcare profes-
sionals in areas of digital health as well as leadership and
management as part of a national learning programme.6,81 The
training of radiologists is also set to change with the recent
incorporation of AI into the national curriculum.83 An openness
from commercial companies to disclose the limitations of their
algorithms and training radiologists how to interpret these is
vital.8,63 The use of AI itself to train radiologists or even provide
continuous performance monitoring of radiologists are possibi-
lities that need further exploration. Conversely, whether the
adoption of such technology will require radiologists to reach a
higher level of performance to keep ahead of AI, is subject to
ongoing speculation.

Governance level
Worldwide healthcare systems are moving forward at great pace
to try utilising this technology with national funding efforts to
develop an AI healthcare ‘ecosystem’. In the UK, this has been
facilitated by collaborations from the Accelerated Access Colla-
borative and NHSX with the formation of the NHS AI labs.37,38 The
same two bodies have also partnered with the National Institute
for Health Research (NIHR) for the provision of an AI Award, to
spur investment into promising commercial companies.27

The recently published NHSX “buyer's guide” provides a much
needed resource for Trusts when procuring AI technology.10 A
proposed checklist also published alongside the buyer’s guide
gives Trusts a procedure to help ensure vital steps of due diligence
are taken, such as setting up insurance cover. However, the overall
cost benefit of implementing such systems is limited in its
evidence base and more robust evidence is needed to ensure
systems are cost-effective.
The legal accountability of algorithms has been at the forefront of

healthcare professionals’ questions, as no clear guidance has been
produced.58 Discussions around the use of AI alongside a radiologist
point towards the ultimate responsibility lying with the clinicians, but
no specifics have been detailed as to how this would fit with NHS
indemnity.7,8 For both clinical decision support systems working
alongside the radiologist and independent stand-alone systems,
further guidance as to the accountability of the companies who
developed the algorithm and NHS Trusts using the AI is needed.
Reviews of “accidents” and “near misses” arising from the use of AI
should be included in department discrepancy meetings. How this is
then fed back to companies, to facilitate algorithm improvement,
needs to be thought through before such events occur.

CONCLUSION
There are many steps to be taken by an array of national agencies,
professional bodies and individual NHS Trusts before AI will
become common place in breast oncological imaging to help
mitigate the growing pressures facing radiology. Whilst promise is
shown with algorithms across a range of imaging modalities
reaching and in certain cases exceeding human performance, and
even performing tasks not feasible for an individual, independent
prospective testing against national benchmarks is needed.
Technical integration and upskilling the healthcare workforce is

essential for AI adoption. The different ethical and legal dilemmas
at the algorithm, data and clinical level should continue to be
discussed and guidance updated for healthcare professionals to
follow. Further research is needed not only to understand the
health economic implications and testing required to ensure that
systems are working by meeting the required performance
thresholds, but also that latent bias is avoided. Lastly, the legal
accountability should be clearly stated for companies and
healthcare professionals when using such systems.
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